CHAPTER

TURING MACHINES

In this chapter we introduce the Turing maci;ine, a sin!ple mathematical mode! of
a computer. Despite its simplicity, the Turing m.'ftchlnc m_ode'ls thc‘compuhu;lg
capability of a general-purpose computer. The Tur-m g machine is studied bot ﬁr
the class of languages it defines (called the recursively enumera_l:;le sets) ’and t :
class of integer functions it computes (called the partial recursive l‘unctlons)._
variety of other models of computation are introduced and shown to be equiv-
alent to the Turing machine in computing power.

7.1 INTRODUCTION

The intuitive notion of an algorithm or effective procedure has arisen several
times. In Chapter 3 we exhibited an effective Prc—cedgre to determine if tht_: s?l
accepted by a finite automation was empty, ﬁmtc_, or mﬁqlle_. One might naively
assume that for any class of languages with. finite descriptions, there exists an
effective procedure for answering such questions. However, this is not the P?sz'se_a.
For example, there is no algorithm to tell wl_lethef the complement of a C Ii
empty (although we can tell whether the CFL 1l_se1[is empty). Notc that \:n} are 11:; :
asking for a procedure that answers the question for a specific context- re? .
guage, but rather a single procedure that will correctly answer lhe'questlon or
CFL’s. It is clear that if we need only determine whether one spe:mﬁc CFL. ha}sl an
empty complement, then an algorithm to answer the qUSStl(.':‘!‘IIGXISlS. That :s,rtther_t:
is one algorithm that says “yes” and another that says “no, independent of her
inputs. One of these must be correct. of course, which of the two algorithms
answers the question correctly may not be obvious.

72 | THE TURING MACHINE MODEL 147

_ At the turn of the century, the mathematician David Hilbert set out on a
program to find an algorithm for determining the truth or falsity of any mathemat-
ical proposition. In particular, he was looking for a procedure to determine if an
arbitrary formula in the first-order predicate calculus, applied to integers, was
true. Since the first-order predicate calculus is powerful enough to express the
statement that the language generated by a context-free grammar is £*, had
Hilbert been successful, our problem of deciding whether the complement of a
CFL is empty would be solved. However, in 1931, Kurt Gédel published his
famous incompleteness theorem, which proved that no such effective procedure
could exist. He constructed a formula in the predicate calculus applied to integers,
whose very definition stated that it could neither be proved nor disproved within
this logical system. The formalization of this argument and the subsequent
clarification and formalization of our intuitive notion of an effective procedure is
one of the great intellectual achievements of this century.

Once the notion of an effective procedure was formalized, it was shown that
there was no effective procedure for computing many specific functions. Actually
the existence of such functions is easily seen from a counting argument. Consider
the class of functions mapping the nonnegative integers onto {0, 1}. These func-
tions can be put into one-to-one correspondence with the reals. However, if we
assume that effective procedures have finite descriptions, then the class of all
effective procedures can be put into one-to-one correspondence with the integers.
Since there is no one-to-one correspondence between the integers and the reals,
there must exist functions with no corresponding effective procedures to compute
them. There are simply too many functions, a noncountable number, and only a
countable number of procedures. Thus the existence of noncomputable functions
is not surprising. What is surprising is that some problems and functions with
genuine significance in mathematics, computer science, and other disciplines are
noncomputable.

Today the Turing machine has become the accepted formalization of an
effective procedure. Clearly one cannot prove that the Turing machine model is
equivalent to our intuitive notion of a computer, but there are compelling argu-
ments for this equivalence, which has become known as Church’s hypothesis. In
particular, the Turing machine is equivalent in computing power to the digital
computer as we know it today and also to all the most general mathematical
notions of computation.

7.2 THE TURING MACHINE MODEL

A formal model for an effective procedure should possess certain properties. First,
each procedure should be finitely describable. Second, the procedure should con-
sist of discrete steps, each of which can be carried out mechanically. Such a model
was introduced by Alan Turing in 1936. We present a variant of it here.

148 TURING MACHINES

The basic-model, illustrated in Fig. 7.1, has a finite control, an input t_ape that
is divided into cells, and a tape head that scans one cell of the tape at a time. The
tape has a leftmost cell but is infinite to the right. Each cell of the tape may hold
exactly one of a finite number of tape symbols. Initially, the n leftmost cells, for
some finite n > 0, hold the input, which is a string of symbols chosen from a subset
of the tape symbols called the input symbols. The remaining h}ﬁmty of cells each
hold the blank, which is a special tape symbol that is not an input symbol.

o o e P e e [2

(4 n

f

Finite
control

Fig. 7.1 Basic Turing machine.

In one move the Turing machine, depending upon the symbol scanned by the
tape head and the state of the finite control,

1) changes state, _
2) prints a symbol on the tape cell scanned, replacing what was written there,
and

3) moves its head left or right one cell.

Note that the difference between a Turing machine an_d a two-way finite
automaton lies in the former's ability to change symbols on its tape.
Formally, a Turing machine (TM) is denoted

M= (Q: E! rl (sv qo» B’ F)’
where

@ is the finite set of states,

I is the finite set of allowable tape symbols,

B, a symbol of T, is the blank,

¥, a subset of I' not including B, is the set of input symbols,

& is the next move function, a mapping from @ x I' to @ x " x {L, R} (¢ may,
however, be undefined for some arguments),

go in Q is the start state,

F < Q is the set of final states.

We denote an instantaneous description (ID) of the Tu_ring_ machine M by
«,q,. Here g, the current state of M, is in Q; «,q; is the string in I'* that is the
contents of the tape up to the rightmost nonblank symbol or the symbol to the left
of the head, whichever is rightmost. (Observe that the blank B may occur in «;a; J)

72 | THE TURING MACHINE MODEL 149

We assume that Q and T are disjoint to avoid confusion. Finally, the tape head is
assumed to be scanning the leftmost symbol of a5, or if a, = ¢, the head is scan-
ning a blank.

We define a move of M as Tollows. Let X, X, - X;_,¢X, - X, be an ID.
Suppose d(g, X;) = (p, Y, L), where if i — 1 = n, then X, is taken to be B. Ifi = 1,
then there is no next ID, as the tape head is not allowed to fall off the left end of

_the tape. If i > 1, then we write

X1 Xz Xio 14X, "'anﬂ'XVYz X ap X YXp o X (710)

However, if any suffix of X;_, YX,,, - X, is completely blank, that suffix is
deleted in (7.1).

Alternatively, suppose d(g, X;) = (p, Y, R). Then we write:
XiXo o Xy @Xi Xy Xobr X0 X - Xio YpX gy -+ X, (72)

Note that in the case i — 1 = n, the string X, --- X, is empty, and the right side of
(7.2) is longer than the left side.

If two ID’s are related by |5 we say that the second results from the first by
one move. If one ID results from another by some finite number of moves, includ-
ing zero moves, they are related by the symbol i We drop the subscript M from
b or i when no confusion results.

The language accepted by M, denoted L{M), is the set of those words in *
that cause M to enter a final state when placed, justified at the left, on the tape of
M, with M in state g,, and the tape head of M at the leftmost cell. Formally, the
language accepted by M = (Q, X, T, 6, g, B, F) is

{w|w in Z* and gow |* «, pu, for some p in F, and «, and a, in I'*}.

Given a TM recognizing a language L, we assume without loss of generality
that the TM halts, i, has no next move, whenever the input is acoepted_.

However, for words not accepted, it is possible that the TM will never halt.

Example 7.1 The design of a'TM M to accept the language L = {0"1"|n > 1} is
given below. Initially, the type of M contains 0"1" followed by an infinity of blanks.
Repeatedly, M replaces the leftmost 0 by X, moves right to the leftmost 1, replac-
ing it by Y, moves left to find the rightmost X, then moves one cell right to the
leftmost O and repeats the cycle. If, however, when searching for a 1, M finds a
blank instead, then M halts without accepting. If, after changinga 1toa Y, M
finds no more 0's, then M checks that no more 1's remain, accepting if there are
none.

Let Q= {qtls qy1 420 93, ‘L‘}s L= {0-: 1}1 I'= {0, 1, X, Y, B}u and F = {qd}
Informally, each state represents a statement or a group of statements in a
program. State g, is entered initially and also immediately prior to each replace-
ment of a leftmost 0 by an X. State g, is used to search right, skipping over 0's and
Y’s until it finds the leftmost 1. If M finds a 1 it changes it to Y, entering state g,.

150 TURING MACHINES

State g, searches left for an X and enters state g, upon finding it, moving right, to
the leftmost 0, as it changes state. As M searches right in state g;, ifaBor X is
encountered before a 1, then the input is rejected; either there are too many O0’s or
the input is not in 0*1*.

State g, has another role. If, after state g, finds the rightmost X, thereisa Y
immediately to its right, then the 0's are exhausted. From go, scanning Y, state g3
is entered to scan over Y’s and check that no 1's remain. If the Y’s are followed by
a B, state g, is entered and acceptance occurs; otherwise the string is rejected. The
function & is shown in Fig. 7.2. Figure 7.3 shows the computation of M on input
0011. For example, the first move is explained by the fact that d(go, 0) =
(g1, X, R); the last move is explained by the fact that 5(qs, B) = (g4, B, R). The
reader should simulate M on some rejected inputs such as 001101, 001, and 011.

Symbol
State 0 1 X Y B
qo (QD X, R} - - (‘:I]’ Y, R) -
U (Qh 0, R) [‘h‘t Y, L} = {‘h; 4 R} —
q2 (92,0, L) = (g0: X, R) gz Y, L —
9 = == — (g3, Y. R) (94, B, R)
qa — — — —_ —_—

Fig. 72 The function 4.

200011 |— Xq,011 }—X0q,11 |—Xq:0Y1 |—
@2 XOY1 |- Xgo0Y1 |- XXq, Y1 |- XXYq,1 |-
XXq:YY |- Xq2 XYY |—XXqoYY |- XXYq3Y |-
XXYYq |- XXYYBqq

Fig. 7.3 A computation of M.

73 COMPUTABLE LANGUAGES AND FUNCTIONS

A language that is accepted by a Turing machine is said to be recursively enumer-
able (r.e.). The term “enumerable” derives from the fact that it is precisely these
languages whose strings can be enumerated (listed) by a Turing machine. “Recur-
sively” is a mathematical term predating the computer, and its meaning is similar
to what the computer scientist would call “recursion.” The class of r.c. languages is
very broad and properly includes the CFL’s.

The class of r.e. languages includes some languages for which we cannot

mechanically determine membership. If L{M) is such a language, then any Turing

73 | COMPUTABLE LANGUAGES AND FUNCTIONS 151

machine recognizing L(M) must fail to halt on some input not in L(M). If w is in
L(M), M eventually halts on input w. However, as long as M is still running on
some input, we can never tell whether M will eventually accept if we let it run long
enough, or whether M will run forever.

It is convenient to single out a subclass of the r.e. sets, called the recursive sets,
which are those languages accepted by at least one Turing machine that halts on
all inputs (note that halting may or may not be preceded by acceptance). We shall
see in Chapter 8 that the recursive sets are a proper subclass of the r.e. sets. Note
also that by the algorithm of Fig. 6.8, every CFL is a recursive set.

The Turing machine as a computer of integer functions

In addition to being a language acceptor, the Turing machine may be viewed as a
computer of functions from integers to integers. The traditional approach is to
represent integers in unary; the integer i > 0 is represented by the string 0'. If a
function has k arguments, iy, i,, ..., iy, then these integers are initially placed on
the tape separated by Is, as 011021 -+ 10™,

If the TM halts (whether or not in an accepting state) with a tape consisting of
0™ for some m, then we say that f(iy, iy, ..., i) = m, where f is the function of k
arguments computed by this Turing machine. Note that one TM may compute a
function of one argument, a different function of two arguments, and so on. Also
note that if TM M computes function f of k arguments, then f need not have a
value for all different k-tuples of integers iy, ..., i.

If f(iy, ..., i) is defined for all iy, ..., i, then we say fis a total recursive
function. A function f (iy, ..., i) computed by a Turing machine is called a partial
recursive function. In a sense, the partial recursive functions are analogous to the
r.e. languages, since they are computed by Turing machines that may or may not
halt on a given input. The total recursive functions correspond to the recursive
languages, since they are computed by TM’s that always halt. All common arith-
metic functions on integers, such as multiplication, n!, [log, n] and 2" are total
recursive functions.

Example 7.2 Proper subtraction m = n is defined to be m — nfor m > n, and zero
for m < n. The TM

M = ({qo, L FON Qs}» {0! I}' {0' 1, B}- 6, qo» B, @)

defined below, started with 0™10" on its tape, halts with 0™*" on its tape. M
repeatedly replaces its leading 0 by blank, then searches right for a 1 followed by a
0 and changes the 0 to 1. Next, M moves left until it encounters a blank and then
repeats the cycle. The repetition ends il

i) Searching right for a 0, M encounters a blank. Then, the n 0’s in 0™10" have all
been changed to I's, and n+ 1 of the m 0’s have been changed to B. M
replaces the n + 1 I's by a 0 and n B’s, leaving m — n 0's on its tape.

152 TURING MACHINES

ii) Beginning the cycle, M cannot find a 0 to change to a blank, because the first
m (s already have been changed. Then n > m, so m = n = 0. M replaces all
remaining 1’s and 0's by B.

The function é is described below.

1) 6(40, 0) = (41, B, R)
Begin the cycle. Replace the leading 0 by B.

2) 4(gy, 0) = (91, 0, R)
(g1, 1) = (42, 1, R)
Search right, looking for the first 1.

3) 6(‘12! l) = (qZ! 1! R)
6(‘12' 0) W (‘13, l, L)
Search right past 1's until encountering a 0. Change that 0 to 1.

4) 6(gs, 0) = (g3, 0, L)
6(gs, 1) = (g3, 1, L)
d(g3, B) = (90, B, R)
Move left to a blank. Enter state g, to repeat the cycle.

5) 8(q2, B) = (44, B, L)
6(qas 1) = (4s» B, L)
5((14! 0) = (QM Ot L)
6(q4, B) = (46, 0, R)
If in state g, a B is encountered before a 0, we have situation (i) described
above, Enter state g, and move left, changing all 1’s to B’s until encountering
a B. This B is changed back to a 0, state g, is entered, and M halts.

6) 5(go, 1) = (gs, B, R)
6(‘;5: 0) = (QS! B: R)
(gs, 1) = (g5, B, R)

5(Q.’n B) 7 (Q6' B RJ
If in state g, a 1 is encountered instead of a 0, the first block of 0’s has been

exhausted, as in situation (11) above M enters state s to erase the rest of the
tape, then enters g and halts.” S

A sample computation of M on input 0010 is:

400010 |— Bq,010 }— BOg, 10 |— B01g,0 |—
BOg,11 }— Bgs011 |— g3 BO11 — Bgo011 }—
BBq, 11— BBlg,1 |— BBl1g; |— BBlg,1 }—
BBq4l |—Bqs |—BOge

74 | TECHNIQUES FOR TURING MACHINE CONSTRUCTION

On input 0100, M behaves as follows:

00100 |— Bq,100 |_:91‘i’200 }— Bg;110 =
q3B110 |— Bgy110 }— BBg410 |— BBBgs0 |—
BBBBqs |— BBBBBy,

153

74 TECHNIQUES FOR TURING MACHINE CONSTRUCTION

NMacicnine Toarin~ .-7-.. SR FTTIELS I 1. o) vt

7.5 | MODIFICATIONS OF TURING MACHINES 159

0 1 / 2 B
qs (g 0, L)
a4y (gs, 1, L,
qs (g9, 0, L)
49 (QQ! 0- L)

(QIOv B! R)
{Qm -B» R)
1 B. R}

g1 (411, B, R) q12, B. R)

1 moves for TM performing multiplication.

Note that we could make more than one call to a subroutine if we rewrote the
w set of states for each call.

Y4415 MODIFICATIONS OF TURING MACHINES

One reason for the acceptance of the Turing machine as a general model of a
computation is that the model with which we have been dealing is equivalent to
many modified versions that would seem off-hand to have increased computing
power. In this section we give informal proofs of some of these equivalence
theorems.

Two-way infinite tape

A Turing machine with a two-way infinite tape is denoted by M = (Q, Z, T, 6, qo,
B, F), as in the original model. As its name implies, the tape is infinite to the left as
well as to the right. We denote an ID of such a device as for the one-way infinite
TM. We imagine, however, that there is an infinity of blank cells both to the left
and right of the current nonblank portion of the tape.

The relation |5, which relates two ID's if the ID on the right is obtained from
the one on the left by a single move, is defined as for the original model with the
exception that if 5(g, X) = (p, Y, L), then gXa - pBYa (in the original model, no
move could be made), and if 8(g, X) = (p, B, R), then g X« |— px (in the original,
the B would appear to the left of p).

The initial ID is gow. While there was a left end to the tape in the original
model, there is no left end of the tape for the Turing machine to “fall off,” so it can
proceed left as far as it wishes. The relation |- as usual, relates two ID’s if the one
on the right can be obtained from the one on the left by some number of moves.

Theorem 7.1 L is recognized by a Turing machine with a two-way infinite tape if
and only if it is recognized by a TM with a one-way infinite tape.

Proof The proof thata TM with a two-way infinite tape can simulate a TM with
a one-way infinite tape is easy. The former marks the cell to the left of its initial
head position and then simulates the latter. If during the simulation the marked
cell is reached, thefgimulation terminates without acceptance.

A LURINGU MAUHINES

. (?onversely, let M, =(Q,, £,, I3, 5, g5, B, F,) be a TM with a two-way
infinite tape. We construct M,, a Turing machine simulating M, and having a
tape that is infinite to the right only. M, will have two tracks, one to represent the
cells of M,’s tape to the right of, and including, the tape cell initially scanned, the
other to represent, in reverse order, the cells to the left of the initial cell.
The relationship between the tapes of M 2 and M, is shown in Fig. 7.7, with
:ﬁc linritiallc:cll of M, numbered 0, the cells to the right 1, 2, ..., and the cells to
eleft —1, =2,

| A-s{AalAa|Ag| A_y| Ag | Ay | A, | 4y | 4, | 4

(b)
Fig. 7.7 (a) Tape of M. (b) Tape of M,.

'l."h(.: first cell of M,’s tape holds the symbol ¢ in the lower track, indicating
that it is the leftmost cell. The finite control of M 1 tells whether M, would be
scanning a symbol appearing on the upper or on the lower track of M,.

It should be fairly evident that M 1 can be constructed to simulate M 2, in the
sense that while M, is to the right of the initial position of its input head, M
works on the upper track. While M, is to the left of its initial tape head positionl.
Ml. works on its lower track, moving in the direction opposite to the direction in
which M, moves. The input symbols of M 1 are symbols with a blank on the lower
?rack_ and an input symbol of M, on the upper track. Such a symbol can be
identified with the corresponding input symbol of M,. B is identified with [B, B].

We now give a formal construction of M, = (@1, Z,, Ty, 84, gy, B, F,). The
states, 0y, of M, are all objects of the form [g, U] or [g, D], where g is in Q,, plus
the symbol g1- Note that the second component will indicate whether M, is
working on the upper (U for up) or lower (D for down) track. The tape symbols in
Iy are all objects of the form [X, Y], where X and Y are in I';. In addition, Y may
be ¢, a symbol not in I',. X, consists of all symbols [a, B], where a is in X,. F, is
{[2. U, [g, D]|q s in F,}. We define &, as follows.

1) For each a in £, U {B}, i
60 [0 B) = (3 ULIX.LR) i 6gs)= (g X, R).

If M, moves rigl?t on its first move, M, prints ¢ in the lower track to mark the
end of tape, sets its second component of state to U, and moves right. The first

7.5 | MODIFICATIONS OF TURING MACHINES 161

component of M ,’s state holds the state of M ,. On the upper track, M, prints
the symbol X that is printed by M.

2) For each a in Z, U {B},

d,(a1, [a, B]) = ([¢, D], [X, ¢], R) if 62(q2, @) = (g, X, L).

If M, moves left on its! first move, M, records the next state of M, and the
symbol printed by M, as in (1) but sets the second component of its state to D
and moves right. Again, ¢ is printed in the lower track to mark the left end of
the tape.

3) For each [X, Y]in I',, with Y # ¢, and A = L or R,
oillg, UL (X, Y])=(p, UL [Z Y] 4) il &i(g, X)=(p, Z, A4).

M, simulates M, on the upper track.
4) For each [X, Y] in 'y, with Y # ¢,

61(lg D} [X, Y)) = ([p, D), [X, Z], 4) il di(q, ¥) = (p, Z, A).

Here Ais Lif Ais R, and A is Rif Ais L. M, simulates M, on the lower track
of M. The direction of head motion of M, is opposite to that of M-,.

5) 6ilg, U, [X, ¢]) = 6:((a, D], [X, ¢])
=(pnCL[Y, ¢l R) if &,(q X)=(p, Y, A).
Here C=Uif A = R,and C = Dif A = L. M, simulates a move of M, on the
cell initially scanned by M,. M, next works on the upper or lower track,

depending on the direction in which M; moves. M, will always move right in
this situation. O

Multitape Turing machines

A multitape Turing machine is shown in Fig. 7.8. It consists of a finite control with
k tape heads and k tapes; each tape is infinite in both directions. On a single move,
depending on the state of the finite control and the symbol scanned by each of the
tape heads, the machine can:

1) change state;

2) print a new symbol on each of the cells scanned by its tape heads;

3) move cach of its tape heads, independently, one cell to the left or right, or keep
it stationary.

Initially, the input appears on the first tape, and the other tapes are blank. We
shall not define the device more formally, as the formalism is cumbersome and a
straightforward generalization of the notation for single-tape TM’s.

Theorem 7.2 If a language L is accepted by a multitape Turing machine, it is
accepted by a single-tape Turing machine.

162 TURING MACHINES

Finite
control

//N
/

Fig. 7.8 Multitape Turing machine.

Proof Let L be accepted by M,, a TM with k tapes. We can construct M,, a
one-tape TM with 2k tracks, two tracks for each of M ,’s tapes. One track records
the contents of the corresponding tape of M, and the other is blank, except for a
marker in the cell that holds the symbol scanned by the corresponding head of
M . The arrangement is illustrated in Fig. 7.9. The finite control of M, stores the

state of M, along with a count of the number of head markers to the right of M,’s
tape head.

Head 1 X

Tape 1 Ay A, A,
Head 2 X

Tape 2 B, B, B,,
Head 3 X

Tape 3 C, C, C

Fig. 7.9 Simulation of three tapes by one.

) Each move of M, is simulated by a sweep from left to right and then from
right to left by the tape head of M. Initially, M,'s head is at the leftmost cell
containing a head marker. To simulate a move of M,, M, sweeps right, visiting
each of the cells with head markers and recording the symbol scanned by each
head of M,. When M, crosses a head marker, it must update the count of head
markers to its right. When no more head markers are to the right, M ; has seen the
symbols scanned by each of M,’s heads, so M, has enough information to deter-

1.5 | MODIFICATIONS OF TURING MACHINES 163

mine the move of M. Now M, makes a pass left, until it reaches the leftmost head
marker. The count of markers to the right enables M, to tell when it has gone far
enough. As M, passes each head marker on the leftward pass, it updates the tape
symbol of M, “scanned” by that head marker, and it moves the head marker one
symbol left or right to simulate the move of M,. Finally, M, changes the state of
M, recorded in M,’s control to complete the simulation of one move of M ;. If the
new state of M, is accepting, then M, accepts. O

Note that in the first simulation of this section—that of a two-way infinite
tape TM by a one-way infinite tape TM, the simulation was move for move. In the
present simulation, however, many moves of M, are needed to simulate one move
of M,. In fact, since after k moves, the heads of M, can be 2k cells apart, it takes
about Y%.., 2i = 2k* moves of M, to simulate k moves of M,. (Actually, 2k more
moves may be needed to simulate heads moving to the right.) This quadratic
slowdown that occurs when we go from a multitape TM to a single tape TM™ is
inherently necessary for certain languages. While we defer a proof to Chapter 12,
we shall here give an example of the efficiency of multitape TM’s.

Example 7.8 The language L= {ww"|w in (0 + 1)*} can be recognized on a
single-tape TM by moving the tape head back and forth on the input, checking
symbols from both ends, and comparing them. The process is similar to that of
Example 7.5.

To recognize L with a two-tape TM, the input is copied onto the second tape.
The input on one tape is compared with the reversal on the other tape by moving
the heads in opposite directions, and the length of the input checked to make sure.
it is even.

Note that the number of moves used to recognize L by the one-tape machine
is approximately the square of the input length, while with a two-tape machine,
time proportional to the input length is sufficient.

Nondeterministic Turing machines

A nondeterministic Turing machine is a device with a finite control and a single,
one-way infinite tape. For a given state and tape symbol scanned by the tape
head, the machine has a finite number of choices for the next move. Each choice
consists of a new state, a tape symbol to print, and a direction of head motion.
Note that the nondeterministic TM is not permitted to make a move in which the
next state is selected from one choice, and the symbol printed and/or direction of
head motion are selected from other choices. The nondeterministic TM accepts its
input if any sequence of choices of moves leads to an accepting state.

As with the finite automaton, the addition of nondeterminism to the Turing
machine does not allow the device to accept new languages. In fact, the combina-
tion of nondeterminism with any of the extensions presented or to be presented,

164 TURING MACHINES

such as two-way infinite or multitape TM’s, does not add additional power. We
leave these results as exercises, and prove only the basic result regarding the
simulation of a nondeterministic TM by a deterministic one. -

Theorem 7.3 If L is accepted by a nondeterministic Turing machine, M, then L
is accepted by some deterministic Turing machine, M ,.

Proof For any state and tape symbol of M,, there is a finite number of choices
for the next move. These can be numbered 1, 2, ... Let r be the maximum number
of choices for any state-tape symbol pair. Then any finite sequence of choices can
be represented by a sequence of the digits 1 through r. Not all such sequences may
represent choices of moves, since there may be fewer than r choices in some
situations.

M, will have three tapes. The first will hold the input. On the second, M , will
generate sequences of the digits 1 through r in a systematic manner. Specifically,
the sequences will be generated with the shortest appearing first. Sequences of
equal length are generated in numerical order.

For each sequence generated on tape 2, M, copies the input onto tape 3 and
then simulates M, on tape 3, using the sequence on tape 2 to dictate the moves of
M. If M, enters an accepting state, M, also accepts. If there is a sequence of
choices leading to acceptance, it will eventually be generated on tape 2. When
simulated, M, will accept. But if no sequence of choices of moves of M, leads to
acceptance, M, will not accept. |

Multidimensional Turing machines

Let us consider another modification of the Turing machine that adds no addi-
tional power—the multidimensional Turing machine. The device has the usual
finite control, but the tape consists of a k-dimensional array of cells infinite in all
2k directions, for some fixed k. Depending on the state and symbol scanned, the
device changes state, prints a new symbol, and moves its tape head in one of 2k
directions, either positively or negatively, along one of the k axes. Initially, the
input is along one axis, and the head is at the left end of the input.

At any time, only a finite number of rows in any dimension contain nonblank
symbols, and these rows each have only a finite number of nonblank symbols. For
example, consider the tape configuration of the two-dimensional TM shown in
Fig. 7.10(a). Draw a rectangle about the nonblank symbols, as also shown in Fig.
7.10(a). The rectangle can be represented row by row on a single tape, as shown in
Fig. 7.10(b). The ’s separate the rows. A second track may be used to indicate the
position of the two-dimensional TM’s tape head.

We shall prove that a one-dimensional TM can simulate a two-dimensional
TM, leaving the generalization to more than two dimensions as an exercise.

Theorem 7.4 If L is accepted by a two-dimensional TM M, then L is accepted
by a one-dimensional TM M,.

7.5 | MODIFICATIONS OF TURING MACHINES 165
B B B a, B B B
B as a; as as B
dg aq ag g B a0 B
ayy | @z | a3 | B as | ays
B B aze ayq B B B

*+BBBa, BBBs» BBa,ajya,as Bvagaagae Ba,g BxBa,,a,;a,3Ba,sa,s+«BBa,ga,; BBBe»

Fig. 7.10 Simulation of two dimensions by one. (a) Two-dimensional tape. (b) One-
dimensional simulation.

Proof M, represents the tape of M, as in Fig. 7.10(b). M, will also have a second
tape used for purposes we shall describe, and the tapes are two-way infinite.
Suppose that M, makes a move in which the head does not leave the rectangle
already represented by M,’s tape. If the move is horizontal, M, simply moves its
head marker one cell left or right after printing a new symbol and changing the
state of M, recorded in M,’s control. If the move is vertical, T} uses its second tape
to count the number of cells between the tape head position and the # to its left.
Then M, moves to the = to the right, if the move is down, or the to the left if the
move is up, and puts the tape head marker at the corresponding position in
the new block (region between ='s) by using the count on the second tape.

Now consider the situation when M,'s head moves off the rectangle repre-
sented by M. If the move is vertical, add a new block of blanks to the left or right,
using the second tape to count the current length of blocks. If the move is horizon-
tal, M, uses the “shifting over” technique to add a blank at the left or right end of
each block, as appropriate. Note that double »’s mark the ends of the region used
to hold blocks, so M, can tell when it has augmented all blocks. After creating
room to make the move, M, simulates the move of M, as described above. [

Multihead Turing machines

A k-head Turing machine has some fixed number, k, of heads. The heads are
numbered 1 through k, and a move of the TM depends on the state and on the
symbol scanned by each head. In one move, the heads may each move indepen-
dently left, right, or remain stationary.

Theorem 7.5 If L is accepted by some k-head TM M, it is accepted by a one-
head TM M.

Proof The proof is similar to that of Theorem 7.2 for multitape TM’s. M, has
k 4 1 tracks on its tape; the last holds the tape of M, and the ith holds a marker

2

166 TURING MACHINES

indicating the position of the ith tape head for 1 < i < k. The details are left for an
exercise. 0

Off-line Turing machines

An off-line Turing machine is a multitape TM whose input tape is read-only.
Usually we surround the input by endmarkers, ¢ on the left and $ on the right. The
Turing machine is not allowed to move the input tape head off the region between
¢ and $. It should be obvious that the off-line TM is just a special case of the
multitape TM, and therefore is no more powerful than any of the models we have
considered. Conversely, an off-line TM can simulate any TM M by using one
more tape than M. The first thing the off-line TM does is copy its own input onto
the extra tape, and it then simulates M as if the extra tape were M’s input. The
need for off-line TM’s will become apparent in Chapter 12, when we consider
limiting the amount of storage space to less than the input length.

7.6 CHURCH’S HYPOTHESIS

The assumption that the intuitive notion of “computable function” can be
identified with the class of partial recursive functions is known as Church's hypoth-
esis or the Church-Turing thesis. While we cannot hope to “prove” Church’s
hypothesis as long as the informal notion of “computable” remains an informal
notion, we can give evidence for its reasonableness. As long as our intuitive notion
of “computable” places no bound on the number of steps or the amount of
storage, it would seem that the partial recursive functions are intuitively compu-
table, although some would argue that a function is not “computable” unless we
can bound the computation in advance or at least establish whether or not the
computation eventually terminates.

What is less clear is whether the class of partial recursive functions includes all
“computable” functions. Logicians have presented many other formalisms such as
the A-calculus, Post systems, and general recursive functions. All have been shown
to define the same class of functions, i.e., the partial recursive functions. In addi-
tion, abstract computer models, such as the random access machine (RAM), also
give rise to the partial recursive functions.

The RAM consists of an infinite number of memory words, numbered 0,
1, ..., each of which can hold any integer, and a finite number of arithmetic
registers capable of holding any integer. Integers may be decoded into the usual
sorts of computer instructions. We shall not define the RAM model more
formally, but it should be clear that if we choose a suitable set of instructions, the
RAM may simulate any existing computer. The proof that the Turing machine
formalism is as powerful as the RAM formalism is given below. Some other
formalisms are discussed in the exercises.

7.7 | TURING MACHINES AS ENUMERATORS 167

44 Simulation of random access machines by Turing machines

Theorem 7.6 A Turing machine can simulate a RAM, provided that the elemen-
tary RAM instructions can themselves be simulated by a TM.

Proof We use a multitape TM M to perform the simulation. One tape of M
holds the words of the RAM that have been given values. The tape looks like

#0xpg # 1evy # 1080, # ==+ #isvp# -,

where p; is the contents, in binary, of the ith word. At all times, there will be some
finite number of words of the RAM that have been used, and M needs only to keep
a record of values up to the largest numbered word that has been used so [ar.

The RAM has some finite number of arithmetic registers. M uses one tape to
hold each register’s contents, one tape to hold the location counter, which contains
the number of the word from which the next instruction is to be taken, and one
tape as a memory address register on which the number of a2 memory word may be

laced.

< Suppose that the first 10 bits of an instruction denote one of the standard
computer operations, such as LOAD, STORE, ADD, and so on, and' that the
remaining bits denote the address of an operand. While we shall not discuss the
details of implementation for all standard computer instructions, an example
should make the techniques clear. Suppose the location counter tape of M holds
number i in binary. M searches its first tape from the left, looking for #is. If a
blank is encountered before finding # ix, there is no instruction in word i, so the
RAM and M halt. If #i* is found, the bits following * up to the next # are
examined. Suppose the first 10 bits are the code for “ADD to register 2,” and the
remaining bits are some number j in binary. M adds 1 to i on the location counter
tape and copies j onto the memory address tape. Then M searches for # j* on th'e:
first tape, again starting from the left (note that # 0+ marks the left end). If # ji is
not found, we assume word j holds 0 and go on to the next instruction of the
RAM. If #j#v; # is found, v; is added to the contents ol‘n_:gislcr 2_, which is stored
on its own tape. We then repeat the cycle with the next instruction.

Observe that although the RAM simulation used a multitape Turing ma-
chine, by Theorem 7.2 a single tape TM would suffice, although the simulation
would be more complicated. O

574" 77 TURING MACHINES AS ENUMERATORS

We have viewed Turing machines as recognizers of languages and as computers of
functions on the nonnegative integers. There is a third useful view of Turing
machines, as generating de! “ces. Consider a multitape TM M that uses one tape as
an output tape, on which a symbol, once written, can never be changed, and whose

168 TURING MACHINES

tape head never moves left. Suppose also that on the output tape, M writes strings
over some alphabet Z, separated by a marker symbol #. We can define G(M), the
language generated by M, to be the set of w in Z* such that w is eventually printed
between a pair of #'s on the output tape.

Note that unless M runs forever, G(M) is finite. Also, we do not require that
words be generated in any particular order, or that any particular word be gen-
erated only once. If Lis G(M) for some TM M, then Lis an r.e. set, and conversely.
The recursive sets also have a characterization in terms of generators; they are
exactly the languages whose words can be generated in order of increasing size.
These equivalences will be proved in turn.

Characterization of r.e. sets by generators
Lemma 7.1 If L is G(M,) for some TM M, then L is an r.e. set.

Proof Construct TM M, with one more tape than M. M, simulates M, using
all but M,’s input tape. Whenever M, prints # on its output tape, M, compares
its input with the word just generated. If they are the same, M, accepts; otherwise
M, continues to simulate M,. Clearly M, accepts an input x if and only if x is in
G(M,). Thus LM ;) = G(M,). O

The converse of Lemma 7.1 is somewhat more difficult. Suppose M, is a
recognizer for some r.e. set L & Z*. Our first (and unsuccessful) attempt at design-
ing a generator for L might be to generate the words in Z* in some order w,,
Wy, ..., TUn M, on w,, and if M, accepts, generate w;. Then run M, on w,,
generating w, if M, accepts, and so on. This method works if M, is guaranteed to
halt on all inputs. However, as we shall see in Chapter 8, there are languages L
that are r.e. but not recursive. If such is the case, we must contend with the
possibility that M, never halts on some w;. Then M, never considers w;, ,,
W42 -+., and so cannot generate any of these words, even if M, accepts them.

We must therefore avoid simulating M, indefinitely on any one word. To do
this we fix an order for enumerating words in Z*. Next we develop a method of
generating all pairs (i, j) of positive integers. The simulation proceeds by generat-
ing a pair (i, j) and then simulating M, on the ith word, for j steps.

We fix a canonical order for * as follows. List words in order of size, with
words of the same size in “numerical order.” That is, let £ = {aq, ay, ..., a4~ },
and imagine that g; is the “digit” i in base k. Then the words of length n are the
numbers 0 through k" — 1 written in base k. The design of a TM to generate words
in canonical order is not hard, and we leave it as an exercise.

Example 7.9 If £ = {0, 1}, the canonical order is ¢ 0, 1, 00, 01, 10, 11, 000,
001, ...

—

i

=,

7.7 | TURING MACHINES AS ENUMERATORS 169

Note that the seemingly simpler order in which we generate the shortest
representation of 0, 1,2, ... in base k will not work as we never generate words like
ag ap a,, which have “leading 0's.”

Next consider generating pairs (i, j) such that each pair is generated after
some finite amount of time. This task is not so easy as it seems. The naive
approach, (1, 1), (1, 2), (1, 3), ... never generates any pairs with i > L. Instead, we
shall generate pairs in order of the sum i + j, and among pairs of equal sum, in
order of increasing i. That is, we generate (1, 1), (1, 2), (2, 1), (1, 3), (2,2), (3, 1),
(1, 4), ... The pair (i, j) is the {[(i + j — 1)(i +j — 2)]/2 + i}th pair gencrated. Thus
this ordering has the desired property that there is a finite time at which any
particular pair (i, j) is generated.

A TM generating pairs (i, j) in this order in binary is easy to design, and we
leave its construction to the reader. We shall refer to such a TM as the pair
generator in the future. Incidentally, the ordering used by the pair generator
demonstrates that pairs of integers can be put into one-to-one correspondence
with the integers themselves, a seemingly paradoxical result that was discovered
by Georg Kantor when he showed that the rationals (which are really the ratios of
two integers) are equinumerous with the integers.

Theorem 7.7 A language is r.e. if and only if it is G(M) for some TM M.

Proof With Lemma 7.1 we have only to show how an r.e. set L= [{M,) can be
generated by a TM M,. M, simulates the pair generator. When (i,) is generated,
M, produces the ith word w; in canonical order and simulates M, on w; for j steps.
If M, accepts on the jth step (counting the initial ID as step 1), then M,
generates w;.

Surely M, generates no word not in L. If w is in L, let w be the ith word in
canonical order for the alphabet of L, and let M, accept w after exactly j moves. As
it takes only a finite amount of time for M, to generate any particular word in
canonical order or to simulate M, for any particular number of steps, we know
that M, will eventually produce the pair (i, j). At that stage, w will be gencrated by
Mz- Thus G(Mz)-:L. S D

Corollary If L is an r.c. set, then there is a generator for L that enumerates each
word in L exactly once.

Proof M, described above has that property, since it generates w; only when
considering the pair (i, j), where j is exactly the number of steps taken by M, to
accept w;. O

Characterization of recursive sets by generators

We shall now show that the recursive sets are precisely those sets whose words can
be generated in canonical order.

NO

1700 TURING MACHINES

Lemma 7.2 If L is recursive, then there is a generator for L that prints the words
of-L in canonical order and prints no other words.

Proof Let L=IL{M,)< E* where M, halts on every input. Construct M, to
generate L as follows. M, generates (on a scratch tape) the words in Z*, one at a
time, in canonical order. After generating some word w, M, simulates M, on w. If
M accepts w, M, generates w. Since M, is guaranteed to halt, we know that M,
will finish processing each word after a finite time and will therefore eventually
consider each particular word in £*, Clearly M, generates L in canonical order.
0O

The converse of Lemma 7.2, that if L can be generated in canonical order then
L is recursive, is also true. However, there is a subtlety of which we should be
aware. In Lemma 7.2 we could actually construct M, from M. However, given a
TM M generating L in canonical order, we know a halting TM recognizing L
exists, but there is no algorithm to exhibit that TM.

Suppose M, generates L in cancnical order. The natural thing to do is to
construct a TM M that on input w simulates M, until M, either generates w or a
word beyond w in canonical order. In the former case, M, accepts w, and in the
latter case, M, halts without accepting w. However, if L is finite, M, may never
halt after generating the last word in L, so M; may generate neither w nor any
word beyond. In this situation M, would not halt. This problem arises only when
L is finite, even though we know every finite set is accepted by a Turing machine
that halts on all inputs. Unfortunately, we cannot determine whether a TM gener-
ates a finite set or, if finite, which finite set it is. Thus we know that a halting
Turing machine accepting L, the language generated by M,, always exists, but
there is no algorithm to exhibit the Turing machine.

Theorem 7.8 L is recursive if and only if L is generated in canonical order.

Proof The “only if” part was established by Lemma 7.2. For the “if” part, when
L is infinite, M, described above is a halting Turing machine for L. Clearly, when
L is finite, there is a finite automaton accepting L, and thus L can be accepted by a
TM that halts on all inputs. Note that in general we cannot exhibit a particular
halting TM that accepts L, but the theorem merely states that one such TM
exists. |

7.8 RESTRICTED TURING MACHINES EQUIVALENT
TO THE BASIC MODEL

In Section 7.5 we considered generalizations of the basic TM model. As we have
seen, these generalizations hayt no more computational power than the basic
model. We conclude this chapter by considering some models that at first appear
less powerful than the but indeed are just as powerful. For the most part,
these models will be vafiations of the pushdown automaton defined in Chapter 5.

EXERCISES

7.1 Design Turing machines to recognize the following languages.
a) {0"1"0"|n > 1}.
b) {ww®|wis in (0 + 1)*}.
c) The set of strings with an equal number of Ols and 1.

7.2 Design Turing machines to compute the following functions.
a) [log, nl b) n! c) n*

EXERCISEs 175

7.3 Show that if L is accepted by a k-tape, /-dimensional, nondeterministic TM with m
heads per tape, then L is accepted by a deterministic TM with one semi-infinite tape and
one tape head.

7.4 A recursive function is a function defined by a finite set of rules that for various
arguments specify the function in terms of variables, nonnegative integer constants, the
successor (add one) function, the function itself, or an expression built from these by
composition of functions. For example, Ackermann’s function is defined by the rules:
1) A(0, y)=1
2) A(1,0)=2
3) A(x,0)=x+2for x =2
4) Alx + 1, y + 1) = A(A(x, y + 1), y)
a) Evaluate A(2, 1). :
* b) What function of one variable is A(x, 2)?
* ¢) Evaluate A(4, 3).

* 15 Give recursive definitions for
a)n+m b) n=m c) nm d) n!

** 76 Show that the class of recursive functions is identical to the class of partial recursive
functions.

7.7 A function is primitive recursive if it is a finite number of applications of composition
and primitive recursiont applied to constant 0, the successor function, or a projection
function Py(x,, ..., X,) = X;.

a) Show that every primitive recursive function is a total recursive function.
**b) Show that Ackermann’s function is not primitive recursive.
** c) Show that adding the minimization operator, min (f(x)) defined as the least x such
that f(x) = 0, yields all partial recursive functions.

78 Design a Turing machine to enumerate {0°1"|n > 1}.

*+ 7.9 Show that every r.c. set is accepted by a TM with only two nonaccepting states and
one accepting state.

*7.10 Complete the proof of Theorem 7.11, that tapes symbols 0 (blank) and 1, with no 1
overprinted by 0, are sufficient for an off-line TM to accept any r.c. language.

7.11 Consider an off-line TM model that cannot write on any tape but has three pebbles
that can be placed on the auxiliary tape. Show that the model can accept any r.c. language.

t A primitive recursion is a definition of f(x,, ..., x,) by
Sflxyy .-y x,)=if x, = 0 then
glxp ooey Xamy)
else
Kl i X (i siey X i %2 =1))

where g and h are primitive recursive functions.

